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Abstract— Urbanization in cities such as Jakarta and 

Bandung is rapid. This is problematic for transportation in 

general; therefore, its design calls for optimization solutions 

to improve overall efficiency. In the process, this work 

discusses how to apply Dijkstra's Algorithm on the shortest 

path problem of the graph-based representation for 

modeling urban transportation. Dijkstra's algorithm finds 

an optimal path due to its weighted graph that represents 

road conditions and travel metrics. Experimental 

investigations underline its efficacy and shortcomings 

regarding dynamic urban contexts. This paper offers 

insights into implementing adaptive solutions for real-world 

transportation systems. 
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I.   INTRODUCTION 

In today's rapidly urbanizing world, the efficiency of 

transportation networks is critical to shaping economic 

growth, environmental sustainability, and quality of life 

among urban residents. Megacities like Jakarta and 

Bandung in Indonesia epitomize these challenges of 

rapid urbanization and population growth. Jakarta 

usually suffers from heavy congestion that strands 

commuters for hours, while congestion spikes 

periodically in Bandung, especially on weekends and 

holidays when tourism peaks. In the end, productivity 

has gone down due to traffic congestion, as well as 

further degradation of the environment, with the high 

fuel consumption and resulting emissions. 

This paper proposes a solution using a graph theory 

mathematical framework that models the transportation 

network of interconnected nodes representing 

intersections and edges representing roads. This 

abstractive notion of complex networks allows algorithms 

to effectively compute optimal pathways. In the context 

of this paper, this is achieved by Dijkstra's Algorithm: a 

powerful algorithm useful in finding the shortest paths 

on weighted graphs. By systematically exploring the 

graph, Dijkstra's Algorithm ensures that the most cost-

effective route can be identified, considering travel 

distance, road conditions, and traffic density. Dijkstra's 

Algorithm is a part of navigation systems like Google 

Maps; it plays a vital role in helping millions of people 

navigate urban landscapes every day. 

Dijkstra's Algorithm has the advantage of being 

comparatively simple and with a high success rate for 

static graphs. In natural conditions, real-life traffic 

scenarios may change frequently, even at any minute, 

considering road congestion or blockages in cities. Thus, 

despite these specific limitations, Dijkstra's Algorithm 

retains a crucial role in research toward the 

conceptualization of truly adaptive routing systems. 

The paper seeks to discuss some of the basic concepts 

and applications of Dijkstra's Algorithm in an urban 

transportation network. The discussion will outline the 

capacity of the algorithm, from its mathematical 

formulation to its practical implementation, to address 

real-world challenges in Indonesian cities. 

 

II.  BASIC THEORY 

A. Graph Theory 

Graph theory offers a mathematical structure to model 

and analyze various forms of networks in transportation 

systems. A graph can be defined mathematically by a set 

of nodes or vertices connected using a set of edges. In 

this context, considering urban transportation networks, 

nodes represent points of interest while edges describe 

the roads, railways, or bus routes connecting two 

locations. 

Formally, a graph G is defined as: 

 

Where: 

 V is a non-empty set of vertices (nodes), 

representing locations in the network, such as 

intersections or stations. 

 

 E is a set of edges (links) that connect pairs of 

vertices, representing roads or transport routes 
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between locations. 

 

In this definition: 

 V must not be empty, meaning a graph cannot 

exist without at least one vertex. 

 E can be empty, meaning a graph can exist even 

if no edges (connections) are present. 

 
Image 1. Graph 

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

024-2025/20-Graf-Bagian1-2024.pdf) 

A graph may be undirected or directed. In the latter, 

the edges are oriented; there is a sense of direction, 

permitting travel along an edge in only one direction. For 

example, one-way streets, and bus routes. Urban 

transportation networks use directed edges to model one-

way streets or one-directional public transit routes. 

 
Image 2. Directed Graph 

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

024-2025/20-Graf-Bagian1-2024.pdf) 

In undirected graphs, edges have no direction; thus, 

one can travel both ways on the same edge, or in other 

words, edges are bidirectional. This graph would model 

systems where the relations between nodes are 

symmetric, such as regular two-way streets in an urban 

area. 

 
Image 3. Undirected Graph 

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

024-2025/20-Graf-Bagian1-2024.pdf) 

Besides directionality, graphs can also be weighted, 

with each edge having a weight reflecting some attribute 

of the connection. This could be in the form of travel 

time, distance, congestion, cost, or even energy 

consumption. Weighted graphs are particularly useful for 

modeling real transportation systems where routes are 

not equal in terms of travel costs. 

A weighted graph  

 

consists of: 

 V: A set of vertices (nodes). 

 E: A set of edges (links) connecting pairs of 

vertices. 

 w: A function that assigns a weight to each 

edge, where w(e) represents the weight of edge 

e. 

 
Image 4. Weighted Graph 

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

024-2025/20-Graf-Bagian1-2024.pdf) 

The edges in a weighted directed graph model the 

"cost" of moving from one node to another. Costs could 

depend on distance, time, and road conditions, among 

others. Consider a city like Jakarta with congested traffic: 

the weight may be taken as the average time that it takes 

to travel from one intersection to another. This weight 

can change within the day. 

Transport networks in cities are represented in two 

ways: 

1. Adjacency Matrix: This representation is one in 

which the relationship between the nodes is 

depicted by using a square matrix. Each entry 

within the matrix describes the weight of the edge 

that connects two nodes. In the case of no direct 

relationship, the entry in the matrix is usually 

filled with a value of infinity or null. This usually 

applies to smaller networks since it allows direct 

access to any node connection and may be 

unsuitable for sparse graphs. 

 
Image 5. Adjacency Matrix 

(https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/) 
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2. Adjacency List: This is a representation where 

each node contains a list of nodes directly 

connected to it and the respective weights of the 

edges. It's more memory-efficient for very big, 

sparse graphs, as it only stores the edges that 

exist. In an urban transportation system, there are 

many nodes with relatively fewer connections due 

to the limited direct routes; thus, the adjacency list 

is often used. 

 
Image 5. Adjacency List 

(https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/) 

Both approaches allow the transport system to be 

effectively modeled as a graph and form the fundamental 

framework on which an array of graph-based algorithms, 

such as Dijkstra's Algorithm, can be implemented for 

finding the best route or controlling traffic flow. 

In graph theory, the degree of a node is defined by the 

number of edges incident to the node. It gives the extent 

of its connectivity within that graph: 

 In-degree: The number of incoming edges to a 

node (relevant in directed graphs). 

 Out-degree: The number of outgoing edges from 

a node (also relevant in directed graphs). 

 Degree: For undirected graphs, the degree 

simply refers to the total number of edges 

incident to a node, which reflects how well-

connected a particular location is within the 

network. 

This will be helpful in urban transportation networks 

where, for example, the degree of a node might provide 

some information. A high degree may mean an 

intersection with many incoming and outgoing roads; it 

is probably a busy traffic hub, whereas a node with a low 

degree may mean fewer roads and thus may be an 

insignificant location in the network. 

Graphs are used to represent complex road networks or 

multi-modal transportation systems in urban 

transportation systems. Graph theory abstracts the system 

into nodes and edges, thus enabling the use of efficient 

algorithms to compute the best paths between any two 

nodes in the network, helping commuters navigate 

efficiently. 

Graph theory can be applied to help transportation 

engineers and developers identify bottlenecks, optimize 

traffic flow, and reduce travel times, such as in cities 

with high congestion like Jakarta. Graph theory 

algorithms, such as Dijkstra's Algorithm, are the 

backbone of real-time traffic management systems that 

update routes with the shortest distance based on current 

conditions such as congestion and road closures.  

 

B. The Shortest Path Problem 

The shortest path problem is a widely used concept in 

graph theory, aimed at finding the path between two 

nodes in a graph that minimizes the total weight of the 

edges traversed. In other words, this means finding the 

best route between two locations in an urban 

transportation network concerning certain criteria such 

as travel time, distance, or cost. The capability to 

determine the shortest path enables solutions for route 

optimization, traffic management, and efficient 

navigation. 

 In graph theory, a path is defined as a series of edges 

in which a sequence of nodes is concatenated by each 

edge connecting two nodes adjacently. The total weight 

of a path is the sum of the weights of all edges included 

in the path. For instance, in a transport network, it would 

be the sequence of roads or public transit routes that 

would be followed to travel from one location to another, 

and the weight here could be the overall metrics of travel 

time or distance. 

 The paths in a graph can be differentiated by the 

nature of nodes and edges that make up the path. A 

simple path is a path where no nodes are repeated, 

meaning that the traversal will not go back to any 

previously visited location. This is very important in 

urban transportation networks, as loops or going back 

would waste time or increase costs unnecessarily. A 

cycle, on the other hand, is a path that starts and ends 

with the same node concept hardly applicable in the 

usual shortest path calculations but useful in the 

detection of redundancies or inefficiencies in a network. 

In an urban transportation system, the shortest path 

problem involves evaluating all possible paths between 

two nodes and selecting the one with minimum weight. 

In large dense networks, it is a problem to find an 

optimum path among hundreds of thousands of nodes 

and edges; hence, special algorithms should be applied to 

do this work quickly and efficiently. It is not confined to 

just a single pair of nodes but can also include all pairs of 

nodes, like finding the shortest path between all pairs of 

nodes for network-wide traffic optimization. 

Shortest path algorithms find a variety of real-life 

applications in transport systems and other areas of 

application. These algorithms are used to estimate the 

fastest or shortest route in navigation systems, such as 

Google Maps and Waze, considering traffic congestion, 

the closure of certain lanes or roads, and even accidents. 

They work based on turn-by-turn data continuously 

updated to make sure that commuters can reach their 

destination efficiently. The algorithms of the shortest 

paths are also applied in intelligent public transit 

systems, which enable passengers to identify the most 

suitable route and schedule, considering buses, trains, 

and subways. 

Traffic management systems also apply shortest-path 

algorithms to reduce congestion and optimize traffic 
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flow. Such systems dynamically reroute vehicles and 

adjust signal timings to reduce delays and improve the 

overall efficiency of transportation. Beyond urban 

transport, shortest-path algorithms are integral to 

applications in logistics and supply chain management, 

where they're used to optimize delivery routes and 

minimize transportation costs. 

 

C. Dijkstra’s Algorithm 

Dijkstra's Algorithm is among the most useful 

methods of solving the shortest path problem in a graph. 

It very efficiently computes the minimum-cost path from 

a source node to all other nodes in the graph and hence 

finds applications in navigation systems and traffic 

management. 

It systematically explores all possible routes from the 

source node, updates the shortest known distance to each 

node, and ensures every node is visited exactly once. The 

algorithm uses weights of edges, which are criteria 

specified for a graph such as travel time, distance, or 

congestion amongst others, in calculating the cost of a 

certain path. The step-by-step breakdown of Dijkstra's 

Algorithm is shown below:  

1. Initialization: 

 Assign all nodes a preliminary distance 

of infinity, except for the source node to 

which a distance of 0 is assigned. This 

reflects that the shortest path to the 

source node is already known. 

 Mark all nodes as unvisited and create a 

priority queue to manage the nodes based 

on their tentative distances. 

2. Current Node Selection: 

 Select the unvisited node with the 

smallest tentative distance as the current 

node. If the smallest distance among 

unvisited nodes is infinity, then the 

algorithm stops since no more reachable 

nodes are available. 

3. Exploration of Neighbors: 

 For each unvisited neighbor of the 

current node, calculate its tentative 

distance by adding to the distance to the 

current node the weight of the edge 

between them. 

 If this tentative distance is smaller than 

the recorded distance for that neighbor, 

renew the distance of the neighbor and 

store the current node as its predecessor. 

4. Mark Node as Visited: 

 Once all neighbors of the current node 

have been assessed, mark the current 

node as visited. A visited node will not be 

revisited, and that ensures that the 

algorithm will eventually terminate. 

5. Repeat: 

 For the next smaller tentative distance 

node in the unvisited node set repeat, 

until all the nodes have been visited or if 

the shortest route to the destination node 

is found. 

The algorithm operates on a weighted graph, where 

each edge 𝑒 ∈ 𝐸 has a weight 𝑤(𝑒), representing the cost 

of traversing the edge. At each step, the algorithm 

ensures that the shortest known distance 𝑑(𝑢) from the 

source node 𝑠 to any node 𝑢 satisfies: 

 

for all neighbors 𝑣 of 𝑢, where 𝑤(𝑣,𝑢) is the weight of 

the edge connecting 𝑣 and 𝑢. This iterative update 

process is known as the relaxation step. 

The algorithm maintains an invariant that once a node 

has been marked as visited, its shortest distance is fixed 

and won't change thereafter. 

The efficiency in Dijkstra's Algorithm lies in the way 

it manages nodes and edges using appropriate data 

structures: 

 Basic Implementation: Using a simple array or 

list to store distances, the algorithm has a time 

complexity of , where 𝑉 is the number of 

vertices in the graph. This approach is suitable 

for smaller graphs or dense networks. 

 Optimized Implementation: Using a priority 

queue (e.g., a binary heap or Fibonacci heap), 

the time complexity reduces to ,  

where 𝐸 is the number of edges. This makes the 

algorithm much more efficient for sparse 

graphs, where the number of edges is 

significantly smaller than the square of the 

number of vertices. 

Dijkstra’s Algorithm’s simplicity and efficiency have 

made it a cornerstone of pathfinding in various 

applications, particularly in static graphs where edge 

weights remain constant. Its performance, however, can 

be challenged in dynamic graphs or real-time systems 

where frequent updates to edge weights occur, requiring 

adaptations or alternative algorithms. 

 

D. Challenges in Applying Dijkstra’s Algorithm in 

Dynamic Environments 

Application of Dijkstra's Algorithm in urban 

transportation networks faces some challenges, more so 

in a dynamic environment due to rapid changes in 

conditions. These result mainly from the differences 

between a static and a dynamic graph with the need for 

updates in real-time. 

Transportation networks can be modeled as either 

static or dynamic graphs. In static graphs, nodes, edges, 

and edge weights are fixed during algorithm execution. 

That would be applicable for idealized or planned 

networks in which conditions such as travel times or road 

availability do not change. However, static graphs cannot 

capture the complexity of real transportation systems. 

Dynamic graphs consider real-time changes in the 

network, such as traffic congestion, road closure, or 
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accidents. In this model, edge weights can change, for 

example, travel times or congestion levels the structure of 

the graph itself may change, such as new edges added 

(newly opened roads) or existing ones removed (closed 

lanes). The variability in dynamic graphs introduces 

challenges in maintaining accurate and efficient route 

recommendations. 

The real-time adaptation of Dijkstra's Algorithm is 

fraught with several critical issues. 

 Frequent Updates: Real-time transportation 

systems demand constant updates of edge 

weights and graph structure. Running Dijkstra's 

Algorithm for minor changes may be inefficient, 

especially for large-scale networks. 

 Computational Overhead: The traditional 

implementation of Dijkstra's Algorithm has a 

time complexity of  or  

when using a priority queue. Repeating this 

process for every update can strain 

computational resources, particularly in dense 

urban graphs with many nodes and edges. 

 Decision-Making Delay: Any latency in 

updating graphs and recalculating the shortest 

paths results in stale or, worse, nonoptimal route 

recommendations being made to commuters. 

For example, unexpected congestion could not 

be instantly caught by the algorithm output to 

provide efficiency. 

 Data Integration: Real-time integration of data 

sources, such as live feeds over traffic, sensor 

data from the IoT, and weather updates. These 

feeds may be inaccurate, incomplete, and/or late. 

This makes it hard for a consistent pathfinding 

algorithm to support. 

A variety of strategies are proposed in this regard to 

ensure smooth and greater functionality for an enhanced 

algorithm in real-life dynamic situations: 

 Incremental Update Methods: Instead of 

recalculating the shortest path from scratch, 

incremental algorithms update the current 

solution to accommodate changes in the graph. 

This approach is computationally efficient and 

more suitable for real-time applications. 

 Heuristic-Based Alternatives: Algorithms such 

as A* make use of heuristics that prefer certain 

nodes or paths over others to reduce superfluous 

exploration and computation time. Such 

algorithms are quite effective in dynamic 

scenarios where speed is crucial. 

 Dynamic Adaptations of Dijkstra: Variants like 

Dynamic Dijkstra are designed to handle 

changes in edge weights or graph structure 

without full recalculation.  

 Integration with Advanced Frameworks: 

Combining Dijkstra's Algorithm with real-time 

data processing systems can offer more 

responsive and adaptable pathfinding solutions. 

For example, traffic management systems can 

utilize streaming data to dynamically adjust 

routes and minimize commuter delays. 

 

III.   IMPLEMENTATION 

A. Graph Representation 

The Graph class represents a directed, weighted graph. 

It uses arrays to store vertex details and edges, providing 

a clear structure for graph-related operations. 

1. Class Initialization 

The graph stores: 

 vertexNameArray: List of vertex 

names. 

 vertexIndexMap: Dictionary 

mapping vertex names to indices. 

 vertexPositionArray: List of (x, y) 

positions of vertices. 

 edgeArray: List of directed edges 

with weights. 

 

Image 6. Class Initialization 

(source: writer’s archive) 

B. Adding Vertices and Edges 

Vertices and edges are added using dedicated methods. 

1. Adding Vertices 

The addVertex() method takes a vertex 

name and its position (x, y). It updates the 

vertex name array, index map, and position 

array. 

 

Image 7. Adding Vertices 

(source: writer’s archive) 

2. Adding Edges 

The addEdge() method establishes a 
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directed connection between two vertices 

with a given weight. 

 

Image 8. Adding Edges 

(source: writer’s archive) 

C. Finding The Shortest Path (Dijkstra’s Algorithm) 

The dijkstra() method calculates the shortest paths 

from a source vertex using a priority queue. 

1. Initialization 

Distances to all vertices are initialized to 

infinity (inf), except for the source vertex. 

 

Image 9. Dijkstra's Algorithm Initialization 

(source: writer’s archive) 

2. Edge Relaxation 

Edges are relaxed to update distances when 

shorter paths are found. 

 

Image 10. Edge Relaxation Process  

(source: writer’s archive) 

3. Tracking State 

States of the distance map are stored for 

visualization purposes. 

 

Image 11. Tracking State  

(source: writer’s archive) 

 

Image 12. Dijkstra's Algorithm 

(source: writer’s archive) 

D. Visualization 

Graph visualization is performed using the 

draw_graph() method, leveraging the NetworkX library 

1. Node and Edge Representation 

Nodes and edges are added to a NetworkX-

directed graph. 

 

Image 13. Node and Edge Representation 

(source: writer’s archive) 

2. Displaying the Graph 

Using Matplotlib, nodes, edges, and labels 

are displayed with custom styling. 
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Image 14. Displaying the Graph 

(source: writer’s archive)  

 

Image 15. Graph Visualization 

(source: writer’s archive) 

E. Testing the Implementation 

The graph functionality is tested by creating vertices, 

adding edges, and calculating shortest paths.  

1. Example Graph 

 

Image 15. Example Graph 

(source: writer’s archive) 

2. Output Visualization 

The graph is visualized with labels and 

edge weights. 

 

Image 16. Output Visualization 

(source: writer’s archive) 

 

IV.   CONCLUSION 

The application and analysis of Dijkstra's Algorithm in 

the urban transportation network have demonstrated its 

conceptual strengths as well as realistic limitations while 

tackling current-day traffic challenges. This paper further 

demonstrates that, with its mathematical rigor and 

guarantee of optimum solution, Dijkstra's algorithm 

remains a very important tool for route optimization in 

transportation networks under stationary conditions. The 

Python-based implementation with visualization features 

of this algorithm has proved to be effective for the 

calculations of shortest paths and assures promising 

potential for large-scale transportation management 

systems. 

However, the research also identifies the limitations of 

the application of Dijkstra's Algorithm to dynamic urban 

environments; for example, in rapidly changing cities 

such as Jakarta and Bandung, the algorithm gives good 

results under static conditions. However, for real-time 

dynamic operations, the complexity of computation, 

along with more frequent recalculations, badly affects its 

efficiency. These results indicate that this approach will 

require sophisticated modifications in the real world. 

Key conclusions from this paper are as follows: 

1. Static Network Performance: The algorithm serves 

as a strong starting point for route optimization 

with valuable initial traffic planning and network 

analysis. 

2. Visualization Tools: These accompanying 

visualization tools give further insight into the 

operations of the algorithm and will be useful in 

transportation network planning and analysis. 

3. Dynamic Environments Challenges: Limitations 

on real-time updates call for further research in 

adaptive algorithms and optimization techniques 

for more responsive applications. 

In addition, future work can be done by including real-

time traffic data, dynamic updates of weights, and hybrid 

approaches involving Dijkstra's Algorithm integrated 

with machine learning techniques. All these will, no 

doubt, enhance its adaptability and responsiveness in 

dynamic traffic scenarios. The work can also be extended 

by availing cutting-edge smart city technologies such as 
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IoT sensors and real-time traffic monitoring systems to 

come up with holistic solutions for urban transportation 

problems. 

This paper will contribute to the wider understanding 

of graph-based solutions in urban transportation and lays 

a foundation for further work on advancing intelligent 

traffic management systems. As cities grow and their 

traffic patterns increase in complexity, so too will the 

foundations outlined here enable innovative, effective 

transportation solutions. 

 

V.   APPENDIX 

 Github Repository for this paper:  

https://github.com/varel183/Optimizing-Urban-

Transportation-Networks  

 YouTube video:  

https://youtu.be/W233D2MKjcw  
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