
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Optimizing Urban Transportation Networks:

Comparative Analysis of Dijkstra's Algorithm in

Graph-Based Shortest Path Solutions

Varel Tiara and 13523008

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13523008@std.stei.itb.ac.id, vareltiara@gmail.com

Abstract— Urbanization in cities such as Jakarta and

Bandung is rapid. This is problematic for transportation in

general; therefore, its design calls for optimization solutions

to improve overall efficiency. In the process, this work

discusses how to apply Dijkstra's Algorithm on the shortest

path problem of the graph-based representation for

modeling urban transportation. Dijkstra's algorithm finds

an optimal path due to its weighted graph that represents

road conditions and travel metrics. Experimental

investigations underline its efficacy and shortcomings

regarding dynamic urban contexts. This paper offers

insights into implementing adaptive solutions for real-world

transportation systems.

Keywords—Dijkstra's Algorithm, graph theory, shortest

path problem, transportation networks

I. INTRODUCTION

In today's rapidly urbanizing world, the efficiency of

transportation networks is critical to shaping economic

growth, environmental sustainability, and quality of life

among urban residents. Megacities like Jakarta and

Bandung in Indonesia epitomize these challenges of

rapid urbanization and population growth. Jakarta

usually suffers from heavy congestion that strands

commuters for hours, while congestion spikes

periodically in Bandung, especially on weekends and

holidays when tourism peaks. In the end, productivity

has gone down due to traffic congestion, as well as

further degradation of the environment, with the high

fuel consumption and resulting emissions.

This paper proposes a solution using a graph theory

mathematical framework that models the transportation

network of interconnected nodes representing

intersections and edges representing roads. This

abstractive notion of complex networks allows algorithms

to effectively compute optimal pathways. In the context

of this paper, this is achieved by Dijkstra's Algorithm: a

powerful algorithm useful in finding the shortest paths

on weighted graphs. By systematically exploring the

graph, Dijkstra's Algorithm ensures that the most cost-

effective route can be identified, considering travel

distance, road conditions, and traffic density. Dijkstra's

Algorithm is a part of navigation systems like Google

Maps; it plays a vital role in helping millions of people

navigate urban landscapes every day.

Dijkstra's Algorithm has the advantage of being

comparatively simple and with a high success rate for

static graphs. In natural conditions, real-life traffic

scenarios may change frequently, even at any minute,

considering road congestion or blockages in cities. Thus,

despite these specific limitations, Dijkstra's Algorithm

retains a crucial role in research toward the

conceptualization of truly adaptive routing systems.

The paper seeks to discuss some of the basic concepts

and applications of Dijkstra's Algorithm in an urban

transportation network. The discussion will outline the

capacity of the algorithm, from its mathematical

formulation to its practical implementation, to address

real-world challenges in Indonesian cities.

II. BASIC THEORY

A. Graph Theory

Graph theory offers a mathematical structure to model

and analyze various forms of networks in transportation

systems. A graph can be defined mathematically by a set

of nodes or vertices connected using a set of edges. In

this context, considering urban transportation networks,

nodes represent points of interest while edges describe

the roads, railways, or bus routes connecting two

locations.

Formally, a graph G is defined as:

Where:

 V is a non-empty set of vertices (nodes),

representing locations in the network, such as

intersections or stations.

 E is a set of edges (links) that connect pairs of

vertices, representing roads or transport routes

mailto:13523008@std.stei.itb.ac.id
mailto:vareltiara@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

between locations.

In this definition:

 V must not be empty, meaning a graph cannot

exist without at least one vertex.

 E can be empty, meaning a graph can exist even

if no edges (connections) are present.

Image 1. Graph

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

024-2025/20-Graf-Bagian1-2024.pdf)

A graph may be undirected or directed. In the latter,

the edges are oriented; there is a sense of direction,

permitting travel along an edge in only one direction. For

example, one-way streets, and bus routes. Urban

transportation networks use directed edges to model one-

way streets or one-directional public transit routes.

Image 2. Directed Graph

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

024-2025/20-Graf-Bagian1-2024.pdf)

In undirected graphs, edges have no direction; thus,

one can travel both ways on the same edge, or in other

words, edges are bidirectional. This graph would model

systems where the relations between nodes are

symmetric, such as regular two-way streets in an urban

area.

Image 3. Undirected Graph

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

024-2025/20-Graf-Bagian1-2024.pdf)

Besides directionality, graphs can also be weighted,

with each edge having a weight reflecting some attribute

of the connection. This could be in the form of travel

time, distance, congestion, cost, or even energy

consumption. Weighted graphs are particularly useful for

modeling real transportation systems where routes are

not equal in terms of travel costs.

A weighted graph

consists of:

 V: A set of vertices (nodes).

 E: A set of edges (links) connecting pairs of

vertices.

 w: A function that assigns a weight to each

edge, where w(e) represents the weight of edge

e.

Image 4. Weighted Graph

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

024-2025/20-Graf-Bagian1-2024.pdf)

The edges in a weighted directed graph model the

"cost" of moving from one node to another. Costs could

depend on distance, time, and road conditions, among

others. Consider a city like Jakarta with congested traffic:

the weight may be taken as the average time that it takes

to travel from one intersection to another. This weight

can change within the day.

Transport networks in cities are represented in two

ways:

1. Adjacency Matrix: This representation is one in

which the relationship between the nodes is

depicted by using a square matrix. Each entry

within the matrix describes the weight of the edge

that connects two nodes. In the case of no direct

relationship, the entry in the matrix is usually

filled with a value of infinity or null. This usually

applies to smaller networks since it allows direct

access to any node connection and may be

unsuitable for sparse graphs.

Image 5. Adjacency Matrix

(https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/)

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

2. Adjacency List: This is a representation where

each node contains a list of nodes directly

connected to it and the respective weights of the

edges. It's more memory-efficient for very big,

sparse graphs, as it only stores the edges that

exist. In an urban transportation system, there are

many nodes with relatively fewer connections due

to the limited direct routes; thus, the adjacency list

is often used.

Image 5. Adjacency List

(https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/)

Both approaches allow the transport system to be

effectively modeled as a graph and form the fundamental

framework on which an array of graph-based algorithms,

such as Dijkstra's Algorithm, can be implemented for

finding the best route or controlling traffic flow.

In graph theory, the degree of a node is defined by the

number of edges incident to the node. It gives the extent

of its connectivity within that graph:

 In-degree: The number of incoming edges to a

node (relevant in directed graphs).

 Out-degree: The number of outgoing edges from

a node (also relevant in directed graphs).

 Degree: For undirected graphs, the degree

simply refers to the total number of edges

incident to a node, which reflects how well-

connected a particular location is within the

network.

This will be helpful in urban transportation networks

where, for example, the degree of a node might provide

some information. A high degree may mean an

intersection with many incoming and outgoing roads; it

is probably a busy traffic hub, whereas a node with a low

degree may mean fewer roads and thus may be an

insignificant location in the network.

Graphs are used to represent complex road networks or

multi-modal transportation systems in urban

transportation systems. Graph theory abstracts the system

into nodes and edges, thus enabling the use of efficient

algorithms to compute the best paths between any two

nodes in the network, helping commuters navigate

efficiently.

Graph theory can be applied to help transportation

engineers and developers identify bottlenecks, optimize

traffic flow, and reduce travel times, such as in cities

with high congestion like Jakarta. Graph theory

algorithms, such as Dijkstra's Algorithm, are the

backbone of real-time traffic management systems that

update routes with the shortest distance based on current

conditions such as congestion and road closures.

B. The Shortest Path Problem

The shortest path problem is a widely used concept in

graph theory, aimed at finding the path between two

nodes in a graph that minimizes the total weight of the

edges traversed. In other words, this means finding the

best route between two locations in an urban

transportation network concerning certain criteria such

as travel time, distance, or cost. The capability to

determine the shortest path enables solutions for route

optimization, traffic management, and efficient

navigation.

 In graph theory, a path is defined as a series of edges

in which a sequence of nodes is concatenated by each

edge connecting two nodes adjacently. The total weight

of a path is the sum of the weights of all edges included

in the path. For instance, in a transport network, it would

be the sequence of roads or public transit routes that

would be followed to travel from one location to another,

and the weight here could be the overall metrics of travel

time or distance.

 The paths in a graph can be differentiated by the

nature of nodes and edges that make up the path. A

simple path is a path where no nodes are repeated,

meaning that the traversal will not go back to any

previously visited location. This is very important in

urban transportation networks, as loops or going back

would waste time or increase costs unnecessarily. A

cycle, on the other hand, is a path that starts and ends

with the same node concept hardly applicable in the

usual shortest path calculations but useful in the

detection of redundancies or inefficiencies in a network.

In an urban transportation system, the shortest path

problem involves evaluating all possible paths between

two nodes and selecting the one with minimum weight.

In large dense networks, it is a problem to find an

optimum path among hundreds of thousands of nodes

and edges; hence, special algorithms should be applied to

do this work quickly and efficiently. It is not confined to

just a single pair of nodes but can also include all pairs of

nodes, like finding the shortest path between all pairs of

nodes for network-wide traffic optimization.

Shortest path algorithms find a variety of real-life

applications in transport systems and other areas of

application. These algorithms are used to estimate the

fastest or shortest route in navigation systems, such as

Google Maps and Waze, considering traffic congestion,

the closure of certain lanes or roads, and even accidents.

They work based on turn-by-turn data continuously

updated to make sure that commuters can reach their

destination efficiently. The algorithms of the shortest

paths are also applied in intelligent public transit

systems, which enable passengers to identify the most

suitable route and schedule, considering buses, trains,

and subways.

Traffic management systems also apply shortest-path

algorithms to reduce congestion and optimize traffic

https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

flow. Such systems dynamically reroute vehicles and

adjust signal timings to reduce delays and improve the

overall efficiency of transportation. Beyond urban

transport, shortest-path algorithms are integral to

applications in logistics and supply chain management,

where they're used to optimize delivery routes and

minimize transportation costs.

C. Dijkstra’s Algorithm

Dijkstra's Algorithm is among the most useful

methods of solving the shortest path problem in a graph.

It very efficiently computes the minimum-cost path from

a source node to all other nodes in the graph and hence

finds applications in navigation systems and traffic

management.

It systematically explores all possible routes from the

source node, updates the shortest known distance to each

node, and ensures every node is visited exactly once. The

algorithm uses weights of edges, which are criteria

specified for a graph such as travel time, distance, or

congestion amongst others, in calculating the cost of a

certain path. The step-by-step breakdown of Dijkstra's

Algorithm is shown below:

1. Initialization:

 Assign all nodes a preliminary distance

of infinity, except for the source node to

which a distance of 0 is assigned. This

reflects that the shortest path to the

source node is already known.

 Mark all nodes as unvisited and create a

priority queue to manage the nodes based

on their tentative distances.

2. Current Node Selection:

 Select the unvisited node with the

smallest tentative distance as the current

node. If the smallest distance among

unvisited nodes is infinity, then the

algorithm stops since no more reachable

nodes are available.

3. Exploration of Neighbors:

 For each unvisited neighbor of the

current node, calculate its tentative

distance by adding to the distance to the

current node the weight of the edge

between them.

 If this tentative distance is smaller than

the recorded distance for that neighbor,

renew the distance of the neighbor and

store the current node as its predecessor.

4. Mark Node as Visited:

 Once all neighbors of the current node

have been assessed, mark the current

node as visited. A visited node will not be

revisited, and that ensures that the

algorithm will eventually terminate.

5. Repeat:

 For the next smaller tentative distance

node in the unvisited node set repeat,

until all the nodes have been visited or if

the shortest route to the destination node

is found.

The algorithm operates on a weighted graph, where

each edge 𝑒 ∈ 𝐸 has a weight 𝑤(𝑒), representing the cost

of traversing the edge. At each step, the algorithm

ensures that the shortest known distance 𝑑(𝑢) from the

source node 𝑠 to any node 𝑢 satisfies:

for all neighbors 𝑣 of 𝑢, where 𝑤(𝑣,𝑢) is the weight of

the edge connecting 𝑣 and 𝑢. This iterative update

process is known as the relaxation step.

The algorithm maintains an invariant that once a node

has been marked as visited, its shortest distance is fixed

and won't change thereafter.

The efficiency in Dijkstra's Algorithm lies in the way

it manages nodes and edges using appropriate data

structures:

 Basic Implementation: Using a simple array or

list to store distances, the algorithm has a time

complexity of , where 𝑉 is the number of

vertices in the graph. This approach is suitable

for smaller graphs or dense networks.

 Optimized Implementation: Using a priority

queue (e.g., a binary heap or Fibonacci heap),

the time complexity reduces to ,

where 𝐸 is the number of edges. This makes the

algorithm much more efficient for sparse

graphs, where the number of edges is

significantly smaller than the square of the

number of vertices.

Dijkstra’s Algorithm’s simplicity and efficiency have

made it a cornerstone of pathfinding in various

applications, particularly in static graphs where edge

weights remain constant. Its performance, however, can

be challenged in dynamic graphs or real-time systems

where frequent updates to edge weights occur, requiring

adaptations or alternative algorithms.

D. Challenges in Applying Dijkstra’s Algorithm in

Dynamic Environments

Application of Dijkstra's Algorithm in urban

transportation networks faces some challenges, more so

in a dynamic environment due to rapid changes in

conditions. These result mainly from the differences

between a static and a dynamic graph with the need for

updates in real-time.

Transportation networks can be modeled as either

static or dynamic graphs. In static graphs, nodes, edges,

and edge weights are fixed during algorithm execution.

That would be applicable for idealized or planned

networks in which conditions such as travel times or road

availability do not change. However, static graphs cannot

capture the complexity of real transportation systems.

Dynamic graphs consider real-time changes in the

network, such as traffic congestion, road closure, or

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

accidents. In this model, edge weights can change, for

example, travel times or congestion levels the structure of

the graph itself may change, such as new edges added

(newly opened roads) or existing ones removed (closed

lanes). The variability in dynamic graphs introduces

challenges in maintaining accurate and efficient route

recommendations.

The real-time adaptation of Dijkstra's Algorithm is

fraught with several critical issues.

 Frequent Updates: Real-time transportation

systems demand constant updates of edge

weights and graph structure. Running Dijkstra's

Algorithm for minor changes may be inefficient,

especially for large-scale networks.

 Computational Overhead: The traditional

implementation of Dijkstra's Algorithm has a

time complexity of or

when using a priority queue. Repeating this

process for every update can strain

computational resources, particularly in dense

urban graphs with many nodes and edges.

 Decision-Making Delay: Any latency in

updating graphs and recalculating the shortest

paths results in stale or, worse, nonoptimal route

recommendations being made to commuters.

For example, unexpected congestion could not

be instantly caught by the algorithm output to

provide efficiency.

 Data Integration: Real-time integration of data

sources, such as live feeds over traffic, sensor

data from the IoT, and weather updates. These

feeds may be inaccurate, incomplete, and/or late.

This makes it hard for a consistent pathfinding

algorithm to support.

A variety of strategies are proposed in this regard to

ensure smooth and greater functionality for an enhanced

algorithm in real-life dynamic situations:

 Incremental Update Methods: Instead of

recalculating the shortest path from scratch,

incremental algorithms update the current

solution to accommodate changes in the graph.

This approach is computationally efficient and

more suitable for real-time applications.

 Heuristic-Based Alternatives: Algorithms such

as A* make use of heuristics that prefer certain

nodes or paths over others to reduce superfluous

exploration and computation time. Such

algorithms are quite effective in dynamic

scenarios where speed is crucial.

 Dynamic Adaptations of Dijkstra: Variants like

Dynamic Dijkstra are designed to handle

changes in edge weights or graph structure

without full recalculation.

 Integration with Advanced Frameworks:

Combining Dijkstra's Algorithm with real-time

data processing systems can offer more

responsive and adaptable pathfinding solutions.

For example, traffic management systems can

utilize streaming data to dynamically adjust

routes and minimize commuter delays.

III. IMPLEMENTATION

A. Graph Representation

The Graph class represents a directed, weighted graph.

It uses arrays to store vertex details and edges, providing

a clear structure for graph-related operations.

1. Class Initialization

The graph stores:

 vertexNameArray: List of vertex

names.

 vertexIndexMap: Dictionary

mapping vertex names to indices.

 vertexPositionArray: List of (x, y)

positions of vertices.

 edgeArray: List of directed edges

with weights.

Image 6. Class Initialization

(source: writer’s archive)

B. Adding Vertices and Edges

Vertices and edges are added using dedicated methods.

1. Adding Vertices

The addVertex() method takes a vertex

name and its position (x, y). It updates the

vertex name array, index map, and position

array.

Image 7. Adding Vertices

(source: writer’s archive)

2. Adding Edges

The addEdge() method establishes a

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

directed connection between two vertices

with a given weight.

Image 8. Adding Edges

(source: writer’s archive)

C. Finding The Shortest Path (Dijkstra’s Algorithm)

The dijkstra() method calculates the shortest paths

from a source vertex using a priority queue.

1. Initialization

Distances to all vertices are initialized to

infinity (inf), except for the source vertex.

Image 9. Dijkstra's Algorithm Initialization

(source: writer’s archive)

2. Edge Relaxation

Edges are relaxed to update distances when

shorter paths are found.

Image 10. Edge Relaxation Process

(source: writer’s archive)

3. Tracking State

States of the distance map are stored for

visualization purposes.

Image 11. Tracking State

(source: writer’s archive)

Image 12. Dijkstra's Algorithm

(source: writer’s archive)

D. Visualization

Graph visualization is performed using the

draw_graph() method, leveraging the NetworkX library

1. Node and Edge Representation

Nodes and edges are added to a NetworkX-

directed graph.

Image 13. Node and Edge Representation

(source: writer’s archive)

2. Displaying the Graph

Using Matplotlib, nodes, edges, and labels

are displayed with custom styling.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Image 14. Displaying the Graph

(source: writer’s archive)

Image 15. Graph Visualization

(source: writer’s archive)

E. Testing the Implementation

The graph functionality is tested by creating vertices,

adding edges, and calculating shortest paths.

1. Example Graph

Image 15. Example Graph

(source: writer’s archive)

2. Output Visualization

The graph is visualized with labels and

edge weights.

Image 16. Output Visualization

(source: writer’s archive)

IV. CONCLUSION

The application and analysis of Dijkstra's Algorithm in

the urban transportation network have demonstrated its

conceptual strengths as well as realistic limitations while

tackling current-day traffic challenges. This paper further

demonstrates that, with its mathematical rigor and

guarantee of optimum solution, Dijkstra's algorithm

remains a very important tool for route optimization in

transportation networks under stationary conditions. The

Python-based implementation with visualization features

of this algorithm has proved to be effective for the

calculations of shortest paths and assures promising

potential for large-scale transportation management

systems.

However, the research also identifies the limitations of

the application of Dijkstra's Algorithm to dynamic urban

environments; for example, in rapidly changing cities

such as Jakarta and Bandung, the algorithm gives good

results under static conditions. However, for real-time

dynamic operations, the complexity of computation,

along with more frequent recalculations, badly affects its

efficiency. These results indicate that this approach will

require sophisticated modifications in the real world.

Key conclusions from this paper are as follows:

1. Static Network Performance: The algorithm serves

as a strong starting point for route optimization

with valuable initial traffic planning and network

analysis.

2. Visualization Tools: These accompanying

visualization tools give further insight into the

operations of the algorithm and will be useful in

transportation network planning and analysis.

3. Dynamic Environments Challenges: Limitations

on real-time updates call for further research in

adaptive algorithms and optimization techniques

for more responsive applications.

In addition, future work can be done by including real-

time traffic data, dynamic updates of weights, and hybrid

approaches involving Dijkstra's Algorithm integrated

with machine learning techniques. All these will, no

doubt, enhance its adaptability and responsiveness in

dynamic traffic scenarios. The work can also be extended

by availing cutting-edge smart city technologies such as

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

IoT sensors and real-time traffic monitoring systems to

come up with holistic solutions for urban transportation

problems.

This paper will contribute to the wider understanding

of graph-based solutions in urban transportation and lays

a foundation for further work on advancing intelligent

traffic management systems. As cities grow and their

traffic patterns increase in complexity, so too will the

foundations outlined here enable innovative, effective

transportation solutions.

V. APPENDIX

 Github Repository for this paper:

https://github.com/varel183/Optimizing-Urban-

Transportation-Networks

 YouTube video:

https://youtu.be/W233D2MKjcw

VI. ACKNOWLEDGMENT

First and foremost, the researcher would like to thank

the Lord for His Grace and kindness. The researcher

would also like to extend the biggest gratitude to Dr.

Rinaldi, Dr. Rila Mandala, and Arrival Dwi Sentosa,

M.T., and Arrival Dwi Sentosa, M.T for their invaluable

guidance and teaching throughout the course, which have

been so vital in writing this paper.

As the author of this paper, I would like to extend my

deepest appreciation to all those who have been

supportive and a source of inspiration to me during the

writing of this paper, thus enabling me to bring it to its

successful completion titled "Optimizing Urban

Transportation Networks: Comparative Analysis of

Dijkstra's Algorithm in Graph-Based Shortest Path

Solutions."

I would also like to thank those authors whose works

were the foundation of this paper, as well as the journals

and articles that gave me so much valuable insight and

greatly added to my knowledge regarding the topic.

This paper would not have been possible without the

invaluable contribution of the individuals listed above.

The support and assistance that I received all served to

propel me to successfully completing the paper. Many

thanks for the help and support that I needed and

received. It is hoped that this paper could also be helpful

to others.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, 3rd ed., MIT Press, 2009.

[2] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[3] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths

algorithms: Theory and experimental evaluation,” Mathematical

Programming, vol. 73, no. 2, pp. 129–174, 1996.

[4] Brilliant, “Dijkstra’s Algorithm,” available online:

https://brilliant.org/wiki/dijkstras-short-path-finder/, [Accessed: 4

Jan. 2025].

[5] S. K. Das and M. Kumar, “A comparative study on shortest path

algorithms,” International Journal of Computer Applications, vol.

182, no. 23, pp. 23–27, 2018.

[6] A. O. Folake, A. Eneh, E. Emmanuel, D. Ebem, and T. Bashiru,

“Analysis and application of shortest path algorithms on urban road

networks,” International Journal of Engineering Inventions, vol.

13, no. 2, pp. 94–97, Feb. 2024.

[7] Y. F. Riti, J. S. Iskandar, and Hendra, “Comparison analysis of graph

theory algorithms for shortest path problem,” Informatics Study

Program, Faculty of Engineering Darma Cendika Catholic

University, Surabaya, Indonesia, vol. 12, no. 3, pp. 415–424, Nov.

2023.

[8] W. Alhoula, Shortest Path Algorithms for Dynamic Transportation

Networks, PhD thesis, The Nottingham Trent University, May 2019.

[9] M. Miler, D. Odobašić, and D. Medak, “The shortest path algorithm

performance comparison in graph and relational database on a

transportation network,” Promet-Traffic & Transportation, vol. 26,

no. 1, pp. 75–82, Feb. 2014.

[10] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, “Faster

algorithms for the shortest path problem,” Working Paper, Alfred P.

Sloan School of Management, Massachusetts Institute of

Technology, W.P. No. 2043-88, Apr. 1988.

[11] GeeksforGeeks, “Introduction to Dijkstra’s Shortest Path

Algorithm,” available online:

https://www.geeksforgeeks.org/introduction-to-dijkstras-shortest-

path-algorithm/?ref=header_outind, [Accessed: 4 Jan. 2025].

[12] M. Burst, “Dijkstra’s Algorithm,” available online:

https://github.com/mburst/dijkstras-algorithm/, [Accessed: 4 Jan.

2025].

[13] V. Piotti, “Dijkstra Solver Bootstrap Vis,” available online:

https://github.com/vittorioPiotti/DijkstraSolver-Bootstrap-Vis,

[Accessed: 4 Jan. 2025].

[14] Transport Geography, “Graph Theory: Definition & Properties,”

available online:

https://transportgeography.org/contents/methods/graph-theory-

definition-properties/, [Accessed: 4 Jan. 2025].

[15] Wikipedia, “Shortest Path Problem,” available online:

https://en.wikipedia.org/wiki/Shortest_path_problem, [Accessed: 4

Jan. 2025].

[16] Wikipedia, “Dijkstra’s Algorithm,” available online:

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm, [Accessed: 4

Jan. 2025].

[17] R. Munir, Graf (Bagian 1), Program Studi Teknik Informatika,

STEI-ITB, available online:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf, [Accessed: 4 Jan. 2025].

[18] R. Munir, Graf (Bagian 2), Program Studi Teknik Informatika,

STEI-ITB, available online:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/21-Graf-Bagian2-2024.pdf, [Accessed: 4 Jan. 2025].

[19] R. Munir, Graf (Bagian 3), Program Studi Teknik Informatika,

STEI-ITB, available online:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/22-Graf-Bagian3-2024.pdf, [Accessed: 4 Jan. 2025].

[20] S. K. Bisen, "Application of Graph Theory in Transportation

Networks," International Journal of Scientific Research and

Management (IJSRM), vol. 5, no. 7, pp. 6197–6201, Jul. 2017.

[21] Graphic Maths, “Adjacency Matrices in Graph Theory,” available

online: https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/#google_vignette, [Accessed: 4 Jan.

2025].

STATEMENT

Hereby, I declare that this paper I have written is my own

work, not a reproduction or translation of someone else’s

paper, and not plagiarized.

Bandung, 8 Januari 2024

Varel Tiara dan 13523008

https://github.com/varel183/Optimizing-Urban-Transportation-Networks
https://github.com/varel183/Optimizing-Urban-Transportation-Networks
https://youtu.be/W233D2MKjcw
https://brilliant.org/wiki/dijkstras-short-path-finder/
https://www.geeksforgeeks.org/introduction-to-dijkstras-shortest-path-algorithm/?ref=header_outind
https://www.geeksforgeeks.org/introduction-to-dijkstras-shortest-path-algorithm/?ref=header_outind
https://github.com/mburst/dijkstras-algorithm/
https://github.com/vittorioPiotti/DijkstraSolver-Bootstrap-Vis
https://transportgeography.org/contents/methods/graph-theory-definition-properties/
https://transportgeography.org/contents/methods/graph-theory-definition-properties/
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/#google_vignette
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/#google_vignette

	I. Introduction
	II. Basic Theory
	III. Implementation
	A. Graph Representation
	B. Adding Vertices and Edges
	C. Finding The Shortest Path (Dijkstra’s Algorithm)
	D. Visualization
	E. Testing the Implementation

	IV. Conclusion
	V. Appendix
	VI. Acknowledgment
	References
	Statement

